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Abstract: Data regarding hyperglycemia-related factors were scarce in people without diabetes. 
Fifty males (age 50–65 years) with overweight/obesity but without diagnosis of diabetes were re-
cruited. After excluding participants with the 2 h plasma glucose value during a 75 g oral glucose 
tolerance test ≥200 mg/dL, continuous glucose monitoring (CGM) was performed for 6 days. Sub-
jects with ≥1800 CGM readings were included (n = 36). The CGM indices of hyperglycemia were 
significantly associated with disposition index and snacking frequency. In receiver-operating char-
acteristic analysis for predicting the maximal CGM glucose ≥200 mg/dL, the area under curves of 
disposition index, snacking frequency, and minimal daily step counts during the study were 0.69, 
0.63, and 0.68, whereas the cutoff values were 1.57, once daily, and 2499 steps, respectively. After 
adjustments, the lower disposition index (≤1.57), higher snacking frequency (≥1 per day), and lower 
minimal step (≤2499 steps per day) categories conferred 14.5, 14.5, and 6.6-fold increased probabil-
ities for having the maximum level ≥ 200 mg/dL, respectively. In addition, the snacking habits were 
significantly associated with insulin resistance and compensatory hyperinsulinemia. In conclusion, 
in middle aged males with overweight/obesity but without diabetes, snacking and physical inactiv-
ity serve as the major drivers of postprandial hyperglycemia independently of β-cell function. 

Keywords: habitual snacking; hyperglycemia; disposition index; physical inactivity; continuous 
glucose monitoring 
 

1. Introduction 
Obesity and insulin resistance are major risk factors for type 2 diabetes [1]. When the 

adaptive response of β-cells to increased insulin resistance is insufficient, hyperglycemia 
develops [2], which, along with other cytotoxic factors, further diminishes β-cell mass and 
function possibly through β-cell apoptosis [3]. Since, by the time that type 2 diabetes is 
diagnosed, 50–80% of β-cell function is lost [1,4] and there is a significant reduction (24–
65%) in β-cell mass [3,5], efforts for the prevention of β-cell dysfunction should be under-
taken before the onset of diabetes. In fact, it is suggested that the onset of β-cell dysfunc-
tion may commence many years before the diagnosis of the disease [6]. However, the time 
point at which this abnormality begins and the factors that may be responsible for this 
pathological and functional change have not been elucidated [7]. 

Hyperglycemia causes inflammation, which consequently results in β-cell apoptosis. 
When the extent of apoptosis due to repeated hyperglycemia exceeds the extent of regen-
eration of the pancreatic β-cell mass, the overall insulin secretion in response to a glycemic 
load is reduced, which results in more hyperglycemia [8]. Therefore, hyperglycemia is 
both a causative factor and an early marker for β-cell dysfunction before the onset of 
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diabetes. Thus, understanding the extent of hyperglycemia in individuals without diabe-
tes under real-life conditions is of great significance for preventive strategies and public 
health initiatives. However, in individuals without diabetes, exposure to elevated glucose 
levels remains underappreciated [9], and there are limited data on the association between 
a β-cell dysfunction measure or lifestyle factors and glucose excursions. 

Age, male gender, and overweight/obesity are the major risk factors for developing 
type 2 diabetes. Recently, we have examined postprandial glucose in middle-aged men 
with overweight/obesity, most of which were normal on the glucose challenge test, and 
demonstrated that a substantial proportion exhibited elevated glucose levels above the 
recommended target for diabetes management [10]. Therefore, it is suggested that caution 
must be exercised in order to prevent postprandial hyperglycemia, even without diabetes. 
In this study, in order to determine the factors associated with hyperglycemia in people 
without diabetes, continuous glucose monitoring (CGM) was performed in middle-aged 
men with overweight/obesity but without diabetes, and the associations between the fac-
tors related to insulin secretion/sensitivity or to lifestyles and the glycemic profiles were 
examined in daily life. Among lifestyle behaviors, we particularly focused on diet and 
exercise, the two major modifiable factors for hyperglycemia. 

2. Methods 
2.1. Study Participants 

A total of 50 (body mass index [BMI] ≥25 kg/m2) middle-aged (age 50–65 years) male 
participants, who had undergone a medical check-up within 1 year and have no docu-
mented dysglycemia (previous diagnosis of diabetes or HbA1c ≥6.5% (48 mmol/mol) or 
FPG ≥126 mg/dL (7 mmol/L) in the preceding 1 year), were recruited into this study. After 
oral glucose tolerance tests (OGTT), persons with a 2 h post challenge glucose value of 
less than 200 mg/dL (11.1 mmol/L) were selected and asked to wear CGM devices. Indi-
viduals whose CGM recording data were obtained for 6 days, with more than 1800 CGM 
readings, were chosen for inclusion in the analysis (n = 36). For the analyses including step 
counts, a participant who did not record the steps during the study was excluded. 

2.2. Assessing Glycemia 
Glucose levels were assessed by using four different methods: (1) CGM was per-

formed using iPro™2 Professional CGM (Medtronic, Minneapolis, MN, USA); (2) partici-
pants created a seven-point self-monitored blood glucose profile (preprandial, 1~2 h post-
prandial, and pre-bedtime) by using a glucometer (Glutest Neo Alpha; Sanwa Kagaku 
Kenkyusho Co, Osaka, Japan) during the days of CGM; (3) in the overnight fasting state, 
the venous blood was drawn from the cubital vein and the fasting plasma glucose (FPG), 
serum glycated hemoglobin (HbA1c), and plasma 1,5-anhydroglucitol (AG) were meas-
ured using standard laboratory procedures; (4) a 2 h, 75 g OGTT was performed after 
overnight fasting (≥12 h). The cutoff 2 h plasma glucose levels of 140 mg/dL (7.8 mmol/L) 
were used to diagnose normal (NGT) and impaired glucose tolerance (IGT). 

2.3. Insulin Secretion/Resistance Indices 
Based on simultaneous measurements of blood glucose and insulin concentrations 

under fasting conditions or during the OGTT, indirect indices of insulin secretion or insu-
lin resistance were determined. The homeostatic model assessment (HOMA)-β and the 
quantitative insulin sensitivity check index (QUICKI) were determined by the following 
formulae: fasting insulin × 360/(fasting glucose − 63) and 1/(log[fasting insulin] + log[fast-
ing glucose]), respectively [11]. HOMA-IR, the insulinogenic index, Matsuda Index [12], 
and disposition index (the product of insulinogenic index and Matsuda Index) were cal-
culated online at http://mmatsuda.diabetes-smc.jp/MIndex.html. (accessed on 30 Aug, 
2021). Formulae for HOMA-IR, insulinogenic index, and Matsuda were (OGTT PG 0 × 
OGTT IRI 0)/405, (OGTT IRI 30 − OGTT IRI 0)/(OGTT PG 30 − OGTT PG 0), and 



Nutrients 2021, 13, x FOR PEER REVIEW 3 of 11 
 

 

10000/SQRT((OGTT PG 0 × OGTT IRI 0) × ((OGTT PG 0 + OGTT PG 30 × 2 + OGTT PG 60 
× 3 + OGTT PG 120 × 2)/8 × (OGTT IRI 0 + OGTT IRI 30 × 2 + OGTT IRI 60 × 3 + OGTT IRI 
120 × 2)/8)), respectively. In order to calculate the insulin secretion-sensitivity index (ISSI)-
2, the area under the curve (AUC) of the insulin (μU/mL) and glucose (mg/dL) levels was 
determined by the trapezoidal rule during OGTT, and the ratio of the AUC for insulin to 
that of glucose was multiplied by the Matsuda Index. 

2.4. Study Protocol 
On the first day, anthropometric data were obtained, and a venous blood sample 

from the cubital vein was obtained to measure FPG, HbA1c, and 1,5-AG. Then, the 75 g 
OGTT was performed, and a CGM device was attached to the abdomen. The iPro™2 re-
corder and Enlite sensor were worn for 6 days. The participants were instructed to cali-
brate the sensor according to the manufacturer’s specifications four times throughout the 
day. Consumptions of foods and drinks, wake-up/sleep time, present illness, medications, 
supplements, subjective symptoms (dyspepsia and bowel movement, etc.), and emotional 
or physical stress (hectic schedule and interpersonal relations, etc.) were self-reported us-
ing the questionnaire on the first day. During the study period, participants were asked 
to keep daily logs of food intake and exercise and to take photographs of every 
meal/snack/drink content with date and time stamp with a digital camera (COOLPIX, Ni-
kon, Tokyo, Japan). Participants were also instructed to wear a smartwatch-type activity 
tracker (PULSENSE, EPSON, Tokyo, Japan) all day, except at bath time. 

2.5. Determination of Snacking and Drinking Frequencies 
Eating or drinking occasions were identified by the participants themselves. Diet-

related data were used to calculate the average number of occasions on which the partic-
ipant consumed food or drink items per week (for self-reported habits) or per day (aver-
aged during the study). Where more than two occasions occurred in the same day for self-
reported habits or in the same 15 min period for frequencies during the study, all events 
were taken as a single occasion. During the study, the food or drink groups and times of 
the ingestion were evaluated using the lifestyle logs and the photographs. Participants 
were asked to identify each food as breakfast, lunch, or dinner for calibration of the CGM 
sensor, and this information was used to identify meals for the purpose of the analysis. In 
the present study, we defined snacking as the ingestion of any caloric food other than 
meals, and drinking as the ingestion of alcohol from the self-reported questionnaires (for 
habits) or from the lifestyle logs (during the study). The average numbers of occasions on 
which the participant consumed food or drink items per week (for habits) and per day 
(during the study) were calculated. 

2.6. Assessment of Physical Activity 
In the present study, maximal, average, and minimal daily walking steps during the 

study were assessed by using smartwatch-type activity trackers and included in the anal-
ysis. 

2.7. Data Analysis for CGM 
As indicators of dysglycemia, the mean glucose level, maximal glucose level, stand-

ard deviation (SD), percent coefficient variability (CV), time above range (TAR; the per-
centage of time when the CGM-recorded value exceeds the selected glucose thresholds), 
and percentage of postprandial peaks above the selected glucose thresholds were calcu-
lated by using all CGM glucose data obtained during the study. The glucose concentra-
tions corresponding to the cutoff points that were proposed as clinical targets [13] were 
used as the thresholds. 
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2.8. Statistical Analysis 
Baseline data are expressed as median and interquartile range (IQR) for all partici-

pants or stratified by the snacking habits category. For categorical data, Pearson’s chi-
square test was used to evaluate how likely it was that any observed difference between 
the sets increased coincidentally. In order to measure the strength and direction of associ-
ation between glucose/insulin-related parameters and CGM metrics, the Spearman’s 
rank-order correlation coefficients () were calculated. The Mann–Whitney U test was 
used for the comparison of variables based on the categorical data. The participants were 
categorized by the frequency of consumption of meals (three times per day or otherwise) 
or snacking (≥once a day or less), by other diet-related parameters (≥once during the study 
period or none), or by the cutoff values obtained from the receiver-operating characteristic 
(ROC) curves. Participants were also stratified by if they have drinking or snacking habits, 
which was identified by responses in a self-reported survey questionnaire. For the lifestyle 
factors related to exercise, participants were divided by the median into subgroups with 
“higher” and “lower” lifestyle values. 

Multiple linear regression was fitted for the maximal CGM sensor glucose value, 
with the disposition index, snacking times per day, and the minimal step category as the 
predictive factors. The normality of residuals was validated by the Shapiro–Wilk test (W 
= 0.9796; p = 0.7476). The variance inflation factor (VIF) calculated for each predictor was 
< 2.5, indicating that multicollinearity could be safely ignored. In addition, a multiple lo-
gistic regression model was constructed to examine the association between the maximal 
CGM glucose ≥200 mg/dL category and independent variables, including the disposition 
index category (cutoff, 1.57), the snacking times per day category (cutoff, once a day), and 
the minimal step category (cutoff, 2499 steps per day). In order to integrate a two-level 
categorical variable into the regression models, a dummy variable with two values was 
created by assigning 1 for the objective category and −1 for the control category. The odds 
ratios of having a maximal CGM glucose level ≥ 200 mg/dL were calculated via the maxi-
mum likelihood method in the logistic regression models. Since type I error rates were 
similar for 5–9 and 10–16 events per predictor variable [14], we conducted fitting with all 
three binary variables in addition to one and two variables. 

The ROC curve analysis was applied to measure the diagnostic accuracy of the dis-
position index, snacking frequency, or minimal step count for predicting the maximal 
CGM glucose level ≥200 mg/dL. For a measure of goodness of fit for binary outcomes in a 
logistic regression model, the AUC was computed. The cutoff point was determined via 
the Youden index to maximize the overall accuracy of the classification rate and assign 
equal weight to the sensitivity and the specificity. 

Based on the assumption that the effect sizes of lifestyle behaviors are large, sample 
sizes were calculated as 34 for Spearman’s rank-order test (two tails; effect size = 0.5; α 
error = 0.05; power = 0.9) and 42 for Mann–Whitney U test (one tail; effect size = 0.8; α 
error = 0.05; power = 0.8). 

Since the present study aims to test the prespecified hypotheses that certain specific 
lifestyle factors are related to the frequency of hidden hyperglycemia, the significant dif-
ferences found in the study are not from the post hoc comparison but from the a priori 
planned comparisons. Therefore, we did not perform the correction for multiple tests. 

Statistical significance was defined as a p value of <0.05. 

2.9. Ethics Statement 
The study was performed in accordance with the principles established by the Hel-

sinki Declaration and approved by the institutional review board of Toyooka Public Hos-
pital (#146; 3 October 2017) and the Japan Conference of Clinical Research review board 
(JCCR#3-132; 21 October 2016). Written informed consent was obtained from all partici-
pants prior to study enrollment. 
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3. Results 
The characteristics of all study participants were reported previously [10]. In brief, 

the median (IQR) age and BMI were 54 (52–58) and 27.9 (26.5–29.4), respectively. Median 
(IQR) HbA1c was 5.4 (5.2–5.6)%, equaling 35.5 (33.3–37.7) mmol/mol, whereas median 
(IQR) 1,5-AG level was 19.7 (15.3–24.1) μg/mL. Although the β-cell function estimated by 
the HOMA-β was well preserved (median 101, IQR 71–154), approximately a quarter of 
the study population had the insulinogenic index of <0.4 (the median insulinogenic index 
was 0.61 (IQR 0.38–1.24)). The results of the 75 g OGTT revealed that 73% had NGT, 
whereas 27% had IGT. The medians (IQR) at 1 h and at 2 h post-challenge glucose levels 
during OGTT were 176 (150–194) mg/dL and 112 (96–140) mg/dL, respectively. 

The CGM results, for which the median total count was 1964 (163.7 h), showed that 
the median maximal CGM sensor glucose level was 193 (IQR, 173–219) mg/dL. Approxi-
mately half (47%) of the participants had CGM-recorded glucose levels of ≥200 mg/dL at 
least once. In participants with the maximal CGM glucose level ≥200 mg/dL, the frequen-
cies of having more than 20% of postprandial CGM peaks ≥180 mg/dL and having more 
than 40% of postprandial CGM peaks ≥140 mg/dL were significantly higher than in those 
with the maximal CGM glucose level <200 mg/dL (69% vs. 10%, p = 0.0008; and 91% vs. 
36%, p = 0.0012, respectively). The median (IQR) TARs higher than 140 and 200 mg/dL 
were 10.4 (4.3–15.8)% and 0.0 (0.0–0.73) %, respectively, while the median (IQR) percent-
ages of ≥140 and ≥200 mg/dL postprandial peaks were 57.5 (25.4–75.5)% and 0 (0–6.4)%, 
respectively. Logging of foods by taking photographs with digital cameras revealed that 
the median (IQR) frequency of snacking was 0.43 (0.04–0.86) times per day. The self-re-
ported diet questionnaire revealed that 33.3% of the participants eat snacks habitually (an-
swered “yes” to whether they have snacking habits). There was no significant correlation 
between the snacking frequency during the study (average times per day) and the self-
reported frequency of the habitual snacking (snacking days per week) (Spearman’s  = 0.2, 
p = 0.234). The pedometer recordings of the number of steps revealed that the participants 
walked approximately 7000 steps per day on average. 

When the associations of anthropometric, glucose/insulin-related, and diet/exercise-
related parameters with the CGM metrics were examined, the HbA1c and disposition in-
dex were significantly associated with all examined CGM parameters for hyperglycemia 
positively and negatively, respectively (Table 1). The preload fasting glucose level was 
significantly associated with TAR > 140 mg/dL, whereas the 1 h post-challenge glucose 
level and Matsuda index were significantly associated with the maximal CGM glucose 
level, TAR >140 mg/dL, and the frequency of the ≥140 mg/dL postprandial CGM glucose 
peak (Table 1). Among the lifestyle-related indices, the self-reported snacking habits (days 
per week) were significantly associated with the maximal CGM glucose level, TAR >200 
mg/dL, and the percentages of the ≥140 mg/dL and the ≥200 mg/dL postprandial CGM 
glucose peaks, while the snacking frequency during the study (times per day) was posi-
tively associated with the frequency of the ≥140 mg/dL postprandial CGM glucose peak 
(Table 2). 

Table 1. Spearman’s rank-order correlation coefficients () of significant associations between biochemical indices and 
CGM metrics. 

Parameters CGM Max TAR > 140 TAR > 200 % of ≥140 Peak per Meal % of ≥200 Peak per Meal 
HbA1c, % 0.52 0.72 0.39 0.65 0.37 
1,5-AG, μg/mL −0.33     
OGTT PG 0, mg/dL  0.34    
OGTT PG 30, mg/dL 0.40 0.35    
OGTT PG 60, mg/dL 0.33 0.43  0.40  
OGTT PG 120, mg/dL      
OGTT IRI 0, μU/mL  0.38    
OGTT IRI 30, μU/mL      
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OGTT IRI 60, μU/mL  0.35    
OGTT IRI 120, μU/mL 0.42 0.49 0.35 0.40  
Insulinogenic index      
HOMA-β      
HOMA-IR  0.41    
Matsuda index −0.33 −0.52  −0.39  
Disposition index −0.48 −0.52 −0.40 −0.44 −0.38 
QUICKI  −0.45  −0.34  

To describe the strength of the association between the two variables, Spearman’s rank-order correlation coefficients were 
calculated. Only correlations with statistical significance (p < 0.05) were shown. 1,5-AG, 1,5-anhydroglucitol; HOMA, ho-
meostatic model assessment; QUICKI, quantitative insulin sensitivity check index; OGTT, 75 g oral glucose tolerance test; 
PG 0, 30, 60, and 120 pre-load and 30 min, 60 min, and 120 min post-load plasma glucose levels, respectively; IRI 0, 30, 60, 
and 120 pre-load and 30 min, 60 min, and 120 min post-load serum insulin levels, respectively; CGM max, the maximal 
sensor glucose level during CGM; TAR, time above range; TAR > 140 and 200, the percentages of time above sensor glucose 
140 and 200 mg/dL, respectively; % of ≥140 and 200 peak per meal, proportions of postprandial hyperglycemia equal to 
or exceed 140 and 200 mg/dL, respectively. 

Table 2. Spearman’s rank-order correlation coefficients () of significant associations between lifestyle-related indices and 
CGM metrics. 

Parameters CGM Max TAR > 140 TAR > 200 
% of ≥140 Peak 

per Meal 
% of ≥200 Peak 

per Meal 
Skip breakfast (4–10 a.m.), % of days     0.33 
Late dinner (10 p.m.), % of days      
Drinking habits, days per week  −0.35    
Snacking habits, days per week 0.33  0.41 0.42 0.39 
Drinking frequency, times per day   −0.34  −0.38 
Snacking frequency, times per day    0.39  
Average walking step counts, steps per day      
Maximal walking step counts, steps per day      
Minimal walking step counts, steps per day      

To describe the strength of the association between the two variables, Spearman’s rank-order correlation coefficients were 
calculated. Only correlations with statistical significance (p < 0.05) were shown. CGM max, the maximal sensor glucose 
level during CGM; TAR, time above range; TAR > 140 and 200, the percentages of time above sensor glucose 140 and 200 
mg/dL, respectively; % of ≥140 and 200 peak per meal, proportions of postprandial hyperglycemia equal to or exceed 140 
and 200 mg/dL, respectively. In the present study, we defined snacking as ingestion of any food other than meals and 
drinking as ingestion of alcohol. 

The associations between the dichotomous categories of the lifestyle-related indices 
and the CGM metrics were next examined. In participants who consumed at least one 
snack per day on average during the study, the maximal CGM glucose level, TARs, and 
the frequencies of hyperglycemic peaks were significantly higher than in those who con-
sumed less than one snack per day (Table 3). In addition, when the participants were cat-
egorized by the median of daily step counts, the maximal CGM glucose level, TARs, and 
the frequencies of hyperglycemic peaks were significantly higher in the lower minimal 
step category (less than the median, at 2681 steps per day) than in the higher minimal step 
category (≥2681 steps per day), while there were no significant differences in the hyper-
glycemic indices between the categories of average or maximal walking steps (Table 3). 

Table 3. Median (IQR) of CGM metrics according to the lifestyle-related factor categories. 

Parameters Category n CGM Max TAR > 140 TAR > 200 % of ≥140 Peak per 
Meal 

% of ≥200 Peak per 
Meal 

Skip breakfast (4–10 
a.m.) 

≥once during the study 17 207 (175–228) 11.0 (5.3–19.9) 0.4 (0–0.92) 71.4 (34.3–83.3) 4.76 (0–10.3) 
none 19 184 (172–213) 9.4 (2.7–15.5) 0 (0–0.46) 42.9 (23.8–66.7) 0 (0–4.76) 

p value  0.241 0.384 0.14 0.188 0.093 
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Late dinner (10 p.m.) 
≥once during the study 12 206 (190–234) 11.5 (8.5–17.8) 0.41 (0–0.73) 64.3 (52.2–75.5) 4.76 (0–8.81) 

none 24 184 (168–215 8.5 (2.4–15.8) 0 (0–0.81) 43.9 (23.6–76.8) 0 (0–5.42) 
p value  0.07 0.159 0.21 0.383 0.275 

Drinking habits 
yes 11 180 (172–187) 5.2 (2.3–11.4) 0 (0–0) 40.9 (23.8–63.2) 0 (0–0) 
no 25 205 (176–220) 11.7 (5.3–17.7) 0.25 (0–0.92) 65 (33.2–88.2) 4.76 (0–9.76) 

p value  0.144 0.175 0.053 0.311 0.028 * 

Snacking habits 
yes 12 214 (181–233) 12.9 (8.8–18.5) 0.59 (0–1.31) 72.4 (56.3–88.6) 4.88 (0–16.3) 
no 24 187 (168–213) 8.5 (2.6–14.0) 0 (0–0.45) 43.9 (22.9–70.2) 0 (0–4.76) 

p value  0.093 0.07 0.038 * 0.029 * 0.056 

Drinking frequency  
≥once during the study 11 180 (172–187) 5.24 (2.3–11.4) 0 (0–0) 40.9 (23.8–63.2) 0 (0–0) 
None during the study 25 205 (176–220) 11.7 (5.3–17.7) 0.25 (0–0.92) 65 (33.2–77.2) 4.76 (0–9.76) 

p value  0.144 0.175 0.053 0.311 0.028 * 

Snacking frequency 
≥once a day 8 226 (207–247) 13.4 (8.9–21.2) 0.7 (0.3–2.82) 77.2 (57.6–94.2) 8.1 (4.45–33) 
<once a day  28 184 (168–211) 9.5 (2.6–15.0) 0 (0–0.52) 48.6 (22.9–70.2) 0 (0–4.76) 

p value  0.003 * 0.048 * 0.005 * 0.007 * 0.005 * 

Average daily step 
counts 

≥the median (6968 
steps per day) 18 187 (159–216) 8 (1.6–14.2) 0 (0–0.74) 52.2 (18.9–69) 0 (0–5.83) 

<the median 17 206 (175–224) 11.3 (5.1–16.4) 0.3 (0–0.81) 65.7 (35.6–90.5) 4.55 (0–9.64) 
p value  0.241 0.156 0.331 0.156 0.349 

Maximal daily step 
counts 

≥the median (11,937 
steps per day) 18 196 (177–225) 9.7 (3.6–15.9) 0.13 (0–1) 59.1 (22–74) 2.17 (0–10.1) 

<the median 17 187 (171–214) 10.9 (3.7–15.1) 0 (0–0.51) 52.4 (33.8–84.4) 0 (0–5.16) 
p value  0.447 0.921 0.46 0.78 0.517 

Minimal daily step 
counts 

≥the median (2681 
steps per day) 18 181 (164–195) 6.4 (1.9–12.4) 0 (0–0.14) 41.9 (20.8–65.4) 0 (0–1.09) 

<the median 17 212 (191–228) 12.2 (6.7–19.9) 0.46 (0–0.92) 71.4 (43.9–84.4) 4.76 (0–10.3) 
p value  0.026 * 0.027 * 0.02 * 0.056 * 0.01 * 

p values were obtained from a Mann–Whitney U test used to compare the two categories. Participants were stratified by 
whether they were taking a food item equal to or more than once during the study period (drinking) or once a day (snack-
ing); if they skipped breakfast or had late dinner at least once during the study period; or if they had drinking or snacking 
habits identified by the self-reported survey questionnaire. For the analysis of daily walking step count, participants were 
stratified by median split into upper and lower categories of maximal, average, and minimal step count during the study. 
IQR, interquartile range; CGM, continuous glucose monitoring; CGM max, the maximal sensor glucose level during CGM; 
TAR, time above range; TAR > 140 and 200, the percentages of time above sensor glucose 140 and 200 mg/dL, respec-
tively; % of ≥140 and 200 peak per meal, proportions of postprandial hyperglycemia equal to or exceed 140 and 200 mg/dL, 
respectively. In the present study, we defined snacking as ingestion of any food other than meals and drinking as ingestion 
of alcohol. *, p value < 0.05. 

In the ROC analysis for sensitivity and specificity in detecting the maximal CGM 
glucose level ≥200 mg/dL, the AUC and the cutoff value of snacking frequency were 0.63 
and 1.0 times per day (sensitivity 41.2% and selectivity 94.7%), respectively, whereas the 
AUC and the cutoff of the disposition index were 0.69 and 1.57 (sensitivity 47.1% and 
selectivity 94.7%), and those of minimal step count were 0.68 and 2499 (sensitivity 76.5% 
and selectivity 73.7%), respectively. 

When the participants were categorized by the cutoff values, univariate or bivariate 
analysis showed that the dichotomized explanatory variables were significantly corre-
lated with the maximal CGM glucose level ≥200 mg/dL (Table 4). In the model, including 
all the categories of the disposition index, the snacking frequency, and the minimal step 
count as predictor variables, the three variables were independently associated with the 
postprandial hyperglycemia (Table 4). The area under the ROC curve of the multivariate 
model was 0.863 (p = 0.0003). After adjustment, participants with a lower disposition index 
(≤1.57), higher snacking frequency (≥1 a day), and lower minimal step count (≤2499) had 
a 14.5-fold, 14.5-fold, and 6.6-fold increased probability for having the maximal CGM glu-
cose level ≥200 mg/dL, respectively, compared to the participants in the opposite category 
(Table 4). 
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Table 4. Associations between the categories of disposition index, snacking frequency, or minimal 
steps and the risk of having the maximal CGM glucose level ≥200 mg/dL. 

Univariate Analysis   Model 1 Model 2 Model 3 
  Odds 95% CI p value Odds 95% CI p value Odds 95% CI p value 

Disposition index ≤1.57 12.6 1.4–117.6 0.007 * - - - - - - 
Snacking frequency ≥once per day - - - 12.6 1.4–117.6 0.007 * - - - 

Minimal step category ≤2499 - - - - - - 8.4 1.8–38.6 0.003 * 
          

Bivariate analysis  Model 4 Model 5 Model 6 
 Odds 95% CI p value Odds 95% CI p value Odds 95% CI p value 

Disposition index ≤1.57 12.3 1.6–262.9 0.014 * - - - 11.1 1.3–247.0 0.024 * 
Snacking frequency ≥once per day 12.3 1.6–262.9 0.014 * 11.1 1.3–247.0 0.024 * - - - 

Minimal step category ≤2499 - - - 7 1.4–42.4 0.016 * 7 1.4–42.4 0.016 * 
          

Trivariate analysis  Model 7        
 Odds 95% CI p value       

Disposition index ≤1.57 14.5 1.4–376.4 0.022 *       
Snacking frequency ≥once per day 14.5 1.4–376.4 0.022 *       

Minimal step category ≤2499 6.6 1.1–54.7 0.036 *       
Logistic regression models were constructed to examine the risk of having the maximal CGM sensor glucose level ≥200 
mg/dL, including the categories of the disposition index, snacking times per day, and minimal daily walking step as pre-
dictor variables. Cutoff values were determined by receiver-operating characteristic curves for detecting the maximal sen-
sor glucose level during CGM ≥ 200 mg/dL. Numbers of variables included in the analyses were 1 (univariate, model 1–
3), 2 (bivariate, model 4–6), and 3 (trivariate, model 7). CI, confidence interval; CGM, continuous glucose monitoring. In 
the present study, we defined snacking as ingestion of any food other than meals. *, p value <0.05. 

As shown in Table 5, in participants with the self-reported snacking habits, the CGM 
maximal glucose, TAR, and the frequencies of postprandial hyperglycemia were signifi-
cantly higher than in those without the habits. In addition, the HOMA-β and fasting/post-
challenge insulin levels were higher, whereas the Matsuda Index was lower, indicating 
insulin resistance with compensatory hyperinsulinemia in participants with snacking 
habits. 

Table 5. Characteristics of the study participants according to the snacking habits category. 

Parameters 
Snacking Habits Category 

p Value Snacking Habits (+) (n = 12) Snacking Habits (−) (n = 24) 
Median IQR, Lower IQR, Upper Median IQR, Lower IQR, Upper 

Age, years 54.0 50.5 56.3 56.0 52.3 58.0 0.187 
BMI, kg/m2 27.7 26.3 31.8 27.9 26.5 29.2 0.737 
HbA1c, % 5.5 5.3 5.9 5.3 5.1 5.5 0.039 * 

1,5-AG, μg/mL 19.6 11.8 26.5 20.2 15.4 24.1 0.801 
HOMA-β 142.0 106.6 277.5 87.9 61.5 128.8 0.002 * 
HOMA-IR 2.6 2.1 4.2 1.6 1 2.3 0.001 * 

Insulinogenic index 0.9 0.4 1.6 0.6 0.3 1.0 0.46 
Matsuda index 2.7 1.3 3.8 4.9 3.0 7.3 0.006 * 

Disposition index 1.5 1.4 4.4 2.9 2.0 4.7 0.159 
QUICKI 0.33 0.31 0.34 0.36 0.34 0.38 0.001 * 

OGTT PG 0, mg/dL 90.5 84.8 98.3 92.5 86.8 96.8 0.724 
OGTT PG 30, mg/dL 167.5 134 192.3 153.0 137.3 175.3 0.46 
OGTT PG 60, mg/dL 170.5 162.0 218.3 179.0 146.0 193.0 0.557 

OGTT PG 120, mg/dL 125.0 95.3 159.3 110.5 95.5 127.8 0.261 
OGTT IRI 0, μU/mL 11.5 9.4 22.8 6.8 5.0 9.7 0.001 * 

OGTT IRI 30, μU/mL 61.5 39.9 110.6 49.3 29.6 73.6 0.202 
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OGTT IRI 60, μU/mL 97.8 56.4 188.2 55.5 43.0 132 0.093 
OGTT IRI 120, μU/mL 116 39.1 180.6 41.0 24.7 66.9 0.017 * 

Data are medians (IQR, interquartile range). p values were obtained from a Mann–Whitney U test used to compare the 
snacking habits categories. BMI, body mass index; 1,5-AG, 1,5-anhydroglucitol; HOMA, homeostatic model assessment; 
QUICKI, quantitative insulin sensitivity check index; OGTT, 75 g oral glucose tolerance test; PG 0, 30, 60, and 120 pre-load 
and 30 min, 60 min, and 120 min post-load plasma glucose levels, respectively; IRI 0, 30, 60, and 120 pre-load and 30 min, 
60 min, and 120 min post-load serum insulin levels, respectively. In the present study, we defined snacking as ingestion 
of any food other than meals. *, p value < 0.05. 

4. Discussion 
In the present study, we performed CGM in adult male with overweight/obesity but 

without diabetes and found that, even in non-diabetic participants, a substantial propor-
tion of participants exhibited elevated sensor glucose levels above the recommended tar-
get for diabetes management. The lower disposition index category (≤1.57), the higher 
snacking frequency category (≥1 a day), and the lower minimal step count categories 
(≤2499) were independently associated with the maximal CGM glucose level ≥200 mg/dL, 
indicating that snacking and physical inactivity result in hyperglycemia independently of 
the insulin secretion. 

In individuals without diabetes, it is reported that the plasma glucose concentrations 
peak approximately 60 min after the start of a meal, rarely exceed 140 mg/dL, and return 
to the preprandial levels within 2–3 h [15,16]. However, in this study, among men with 
overweight/obesity but without diabetes, 100% and 47% of the participants exhibited the 
maximal CGM glucose levels ≥140 mg/dL and ≥200 mg/dL, respectively, indicating that 
postprandial hyperglycemia prevails among non-diabetes. Since there were significant as-
sociations between the 1 h post-challenge glucose level and the CGM indices of hypergly-
cemia (Table 2), a diagnosis of dysglycemia in individuals without diabetes should be 
made on the basis of the 1 h and not of the 2 h post-challenge glucose level. 

In this study, snacking is associated closely with the indices of hyperglycemia. As 
shown in Tables 3 and 4, snacking at least once a day is closely associated with indices of 
hyperglycemia. Interestingly, during the study period, self-reported snacking habits (and 
not snacking frequency) were significantly associated with indices of insulin resistance 
such as HOMA-IR, the Matsuda Index, or QUICK. After adjustment for age and BMI, the 
odds ratio of having a value in the lower half of the Matsuda Index was 7.9 times higher 
in participants with snacking habits than in those without these habits. Therefore, while 
snacking results in postprandial hyperglycemia, snacking habits, through the continued 
consumption of unhealthy snacks, produce hepatic and peripheral insulin resistance, 
which further worsens the hyperglycemia. Since the strength of habits is the most im-
portant predictor in explaining unhealthy snack intake [17] and since poor dietary habits 
established during childhood could persist into adulthood, which increases the risk of 
developing obesity and obesity-related complications such as type 2 diabetes [18], it is 
important to encourage the development of healthy eating habits as early as possible so 
that they can last a lifetime. 

In this study, the lower minimal step category was significantly associated with 
higher CGM metrics for mean and postprandial hyperglycemia, whereas intergroup dif-
ferences among categories of average or maximal steps did not reach statistical signifi-
cance. Minimal steps during the study less than 2499 per day effectively predicts a maxi-
mal CGM glucose level of ≥200 mg/dL. As prolonged sitting and less physical activity are 
integrated into modern lifestyles across settings such as transportation, the workplace, 
and the home, a sedentary lifestyle has lately received focus as a major mortality risk fac-
tor [19,20], independent of physical activity [21]. A randomized crossover study showed 
that interrupting the sitting duration with standing and light-intensity walking effectively 
improved daily glucose levels and insulin sensitivity in type 2 diabetes [22]. These results 
suggest that the lower number of minimal steps could be a surrogate indicator of a 
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sedentary lifestyle and attempts to increase minimal step counts in daily living could be 
beneficial for preventing dysglycemia. 

Limitation of the study includes the following: (1) The sample size calculation was 
based on the assumption that the effect size of snacking is large. The study may, therefore, 
not have the statistical power to expose possible smaller effects of other lifestyle factors (a 
type II error). The (2) present study focused on middle-aged male with overweight/obe-
sity, one of the highest groups for developing type 2 diabetes. The association of lifestyle 
factors and hyperglycemia in other population should be determined elsewhere. Since (3) 
habitual lifestyle behaviors are self-reported, participants might overestimate or underes-
timate their eating, snacking, or drinking habits. During the study, we evaluated food 
items by photographs where a reporting bias may also exist and (4) since, for dietary be-
haviors, only the occasions were taken account, the present study does not tell the effects 
of the intensity of snacking or drinking other than occasions. In addition, no data regard-
ing the intensity of physical activity other than step counts exist. 

5. Conclusions 
In adult male with overweight/obesity but without diabetes, higher snacking fre-

quency and lower walking steps serve as the major drivers of postprandial hyperglycemia, 
independently of β-cell function. Since the snacking habits are associated with insulin re-
sistance, which further worsens the hyperglycemia, detecting hyperglycemia as early as 
possible and breaking unhealthy habits could prevent detrimental glucose surges in daily 
living and mitigate dysfunction of β-cells. 
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